Antwoord:
Uitleg:
Dit is een parabool en we willen de Vertex
Driehoek A heeft zijden van de lengten 12, 16 en 8. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 16. Wat zijn de mogelijke lengtes van de andere twee zijden van driehoek B?
De andere twee zijden van b kunnen van kleur (zwart) ({21 1/3, 10 2/3}) of van kleur (zwart) ({12,8}) of van kleur (zwart) ({24,32}) zijn " , kleur (blauw) (12),"
Driehoek A heeft zijden van de lengten 12, 16 en 18. Driehoek B is vergelijkbaar met driehoek A en heeft een zijde met een lengte van 16. Wat zijn de mogelijke lengtes van de andere twee zijden van driehoek B?
Er zijn drie mogelijke reeksen lengten voor Driehoek B. Om gelijke driehoeken te hebben, zijn alle zijden van Driehoek A in dezelfde verhoudingen als de overeenkomstige zijden in Driehoek B. Als we de lengten van de zijden van elke driehoek {A_1, A_2 , en A_3} en {B_1, B_2 en B_3}, kunnen we zeggen: A_1 / B_1 = A_2 / B_2 = A_3 / B_3 of 12 / B_1 = 16 / B_2 = 18 / B_3 De gegeven informatie zegt dat een van de zijden van Triangle B is 16, maar we weten niet welke kant. Het kan de kortste zijde (B_1), de langste zijde (B_3) of de "middelste" zijde (B_2) zijn, dus we moeten alle mogelijkheden overwegen Als B_1 = 16 12
We hebben een cirkel met een ingeschreven vierkant met een ingeschreven cirkel met een ingeschreven gelijkzijdige driehoek. De diameter van de buitenste cirkel is 8 voet. Het driehoeksmateriaal kost $ 104,95 per vierkante voet. Wat zijn de kosten van het driehoekige centrum?
De kosten van een driehoekig centrum zijn $ 1090.67 AC = 8 als een gegeven diameter van een cirkel. Daarom, vanuit de stelling van Pythagoras voor de rechter gelijkbenige driehoek Delta ABC, AB = 8 / sqrt (2) Vervolgens, aangezien GE = 1/2 AB, GE = 4 / sqrt (2) Uiteraard is driehoek Delta GHI gelijkzijdig. Punt E is een middelpunt van een cirkel die Delta GHI omschrijft en is als zodanig een middelpunt van snijpunten van medianen, hoogten en hoekbisectors van deze driehoek. Het is bekend dat een snijpunt van medianen deze medianen verdeelt in de verhouding 2: 1 (zie voor bewijzen Unizor en volg de links Geometrie - Paralle