Antwoord:
Zie onderstaande uitleg
Uitleg:
Veelgemaakte fouten zijn eigenlijk niet heel gebruikelijk. Dit is afhankelijk van een bepaalde student. Hier zijn echter een paar waarschijnlijke fouten die een student kan maken met 2-D vectoren
1.) Verkeer de richting van een vector verkeerd.
Voorbeeld:
2.) Verkeer de richting van een positievector verkeerd
Positie vector van een punt zeg
3.) Verkeer de richting van het vectorproduct verkeerd
Voorbeeld: de richting van
Notitie: Twee niet-parallelle vectoren kunnen kruisend worden gemaakt door ze in hun respectieve parallelle richtingen te verschuiven
Er kunnen ook andere veelgemaakte fouten zijn, maar hierboven zijn er maar weinig.
Er zijn studenten en banken in een klaslokaal. Als er 4 studenten in elke bank zitten, zijn er 3 banken vrij. Maar als 3 studenten in een bank zitten, blijven er 3 studenten staan. Wat zijn de totale aantallen. van studenten ?
Het aantal studenten is 48 Laat het aantal studenten = y laat het aantal banken = x van de eerste stelling y = 4x - 12 (drie lege banken * 4 studenten) van de tweede stelling y = 3x +3 Vervanging van vergelijking 2 in vergelijking 1 3x + 3 = 4x - 12 herschikken x = 15 Vervangen van de waarde voor x in vergelijking 2 y = 3 * 15 + 3 = 48
Wat zijn veelvoorkomende fouten die studenten maken bij het werken met een domein?
Domein is meestal een vrij eenvoudig concept en lost meestal alleen vergelijkingen op. Echter, een plaats die ik heb gevonden dat mensen de neiging hebben fouten te maken in het domein, is wanneer ze composities moeten evalueren. Overweeg bijvoorbeeld het volgende probleem: f (x) = sqrt (4x + 1) g (x) = 1 / 4x Evalueer f (g (x)) en g (f (x)) en vermeld het domein van elke compositie functie. f (g (x)): sqrt (4 (1 / 4x) +1) sqrt (x + 1) Het domein hiervan is x -1, wat je krijgt door in te stellen wat er in de root is groter dan of gelijk aan nul . g (f (x)): sqrt (4x + 1) / 4 Het domein van dit is allemaal reals. Als we de
Wat zijn veelvoorkomende fouten die studenten maken bij het werken met bereik?
Zie hieronder. Enkele veelgemaakte fouten die studenten tegenkomen bij het werken met bereik kunnen zijn: Vergeten om rekening te houden met horizontale asymptoten (maak je hier geen zorgen om totdat je bij de Rational Functions-eenheid komt) (Vaak gemaakt met logaritmische functies) De grafiek van de rekenmachine gebruiken zonder je geest te gebruiken om het venster intepret te maken (rekenmachines laten bijvoorbeeld geen grafieken zien die doorgaan naar verticale asymptoten, maar algebraïsch, je kunt afleiden dat ze dat eigenlijk zouden moeten doen) Het bereik verwarren met domein (domein is meestal x, terwijl berei