Als we de drie zijden noemen als
De eigenschap van de verhoudingen gebruiken (die vóór de verbinding gebruikt wordt en dan de omkering van termen):
of:
of:
De lengte van elke zijde van een gelijkzijdige driehoek wordt verhoogd met 5 inch, dus de omtrek is nu 60 inch. Hoe schrijf en los je een vergelijking op om de originele lengte van elke zijde van de gelijkzijdige driehoek te vinden?
Ik vond: 15 "in" Laten we de oorspronkelijke lengte x noemen: Toename van 5 "in" geeft ons: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 herschikken: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "in"
De omtrek van een driehoek is 24 inch. De langste zijde van 4 inch is langer dan de kortste zijde en de kortste zijde is driekwart de lengte van de middelste zijde. Hoe vind je de lengte van elke zijde van de driehoek?
Nou, dit probleem is simpelweg onmogelijk. Als de langste zijde 4 inch is, kan de omtrek van een driehoek niet 24 inch zijn. Je zegt dat 4 + (iets minder dan 4) + (iets minder dan 4) = 24, wat onmogelijk is.
De omtrek van een driehoek is 29 mm. De lengte van de eerste zijde is tweemaal de lengte van de tweede zijde. De lengte van de derde zijde is 5 meer dan de lengte van de tweede zijde. Hoe vind je de zijlengtes van de driehoek?
S_1 = 12 s_2 = 6 s_3 = 11 De omtrek van een driehoek is de som van de lengten van alle zijden. In dit geval wordt gegeven dat de omtrek 29 mm is. Dus voor dit geval: s_1 + s_2 + s_3 = 29 We lossen de lengte van de zijkanten op en vertalen de instructies in het gegeven in een vergelijkingsformulier. "De lengte van de 1e zijde is twee keer de lengte van de 2e zijde" Om dit op te lossen, wijzen we een willekeurige variabele toe aan s_1 of s_2. Voor dit voorbeeld zou ik x de lengte van de 2e zijde laten zijn om te voorkomen dat er breuken in mijn vergelijking staan. dus we weten dat: s_1 = 2s_2 maar omdat we s_2 x zi