
Antwoord:
Uitleg:
De vergelijking x ^ 4 -2x ^ 3-3x ^ 2 + 4x-1 = 0 heeft vier verschillende echte wortels x_1, x_2, x_3, x_4 zodanig dat x_1<><>

-3 Uitbreiden (x + x_1) (x + x_2) (x + x_3) (x + x_4) en vergelijken hebben we {(x_1x_2x_3x_4 = -1), (x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 = 4), (x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + x_3 x_4 = -3), (x_1 + x_2 + x_3 + x_4 = -2):} Analyseer nu x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 x_4 + x_2 x_4 + x_3 x_4 = x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 + (x_2x_3 + x_1x_4) Het kiezen van x_1x_4 = 1 volgt op x_2x_3 = -1 (zie de eerste voorwaarde) vandaar x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 + (x_2x_3 + x_1x_4) = -3 of x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 = -3- (x_2x_3 + x_1x_4) = - 3
De helling m van een lineaire vergelijking kan worden gevonden met behulp van de formule m = (y_2 - y_1) / (x_2-x_1), waarbij de x-waarden en y-waarden afkomstig zijn van de twee geordende paren (x_1, y_1) en (x_2 , y_2), Wat is een equivalente vergelijking opgelost voor y_2?

Ik weet niet zeker of je dit wilt, maar ... Je kunt je expressie anders rangschikken om y_2 te isoleren met een paar 'Algaebric Movements' over het = teken: Uitgaande van: m = (y_2-y_1) / (x_2-x_1) Take ( x_2-x_1) aan de linkerkant tegenover het = -teken, daarbij herinnerend dat als het zich oorspronkelijk deelde, het gelijkteken voorbij ging, het nu vermenigvuldigt: (x_2-x_1) m = y_2-y_1 Vervolgens nemen we y_1 naar links om te onthouden dat we van operatie moeten veranderen opnieuw: van aftrekken tot sum: (x_2-x_1) m + y_1 = y_2 Nu kunnen we de geherrangschikte expressie in termen van y_2 "lezen" als: y
F (x) = 3x ^ 3-6x ^ 2 + 9x + 6 f (x_1) = f (x_2) = f (x_3) = 0 x_1 ^ 2 + x_2 ^ 2 + x_3 ^ 2 =? result = 3 maar hoe vind je dat?

"Resultaat = -2, en niet 3" x_1 ^ 2 + x_2 ^ 2 + x_3 ^ 2 = (x_1 + x_2 + x_3) ^ 2 - 2 (x_1 x_2 + x_1 x_3 + x_2 x_3) = (6/3) ^ 2 - 2 (9/3) = -2 "(Newton-identiteiten)"