Antwoord:
De drie opeenvolgende gehele getallen zijn 19, 20 en 21. En 19 + 21 = 40.
Uitleg:
Laat het eerste gehele getal zijn
Het volgende opeenvolgende gehele getal zou zijn
De vergelijking voor de som van het eerste en derde gehele getal gelijk aan 40 kan dan worden geschreven als:
Oplossen geeft:
Er zijn drie opeenvolgende gehele getallen. als de som van de reciprocals van het tweede en derde gehele getal (7/12) is, wat zijn dan de drie gehele getallen?
2, 3, 4 Laat n het eerste gehele getal zijn. Dan zijn de drie opeenvolgende gehele getallen: n, n + 1, n + 2 Som van de reciprocals van 2e en 3e: 1 / (n + 1) + 1 / (n + 2) = 7/12 Toevoegen van de breuken: (( n + 2) + (n + 1)) / ((n + 1) (n + 2)) = 7/12 Vermenigvuldig met 12: (12 ((n + 2) + (n + 1))) / ( (n + 1) (n + 2)) = 7 Vermenigvuldigen met ((n + 1) (n + 2)) (12 ((n + 2) + (n + 1))) = 7 ((n + 1 ) (n + 2)) Uitbreiden: 12n + 24 + 12n + 12 = 7n ^ 2 + 21n + 14 Verzamelen als termen en vereenvoudigen: 7n ^ 2-3n-22 = 0 Factor: (7n + 11) (n-2 ) = 0 => n = -11 / 7 en n = 2 Alleen n = 2 is geldig omdat we gehele getallen ver
Drie opeenvolgende gehele getallen kunnen worden weergegeven door n, n + 1 en n + 2. Als de som van drie opeenvolgende gehele getallen 57 is, wat zijn dan de gehele getallen?
18,19,20 Som is de optelling van het aantal, zodat de som van n, n + 1 en n + 2 kan worden weergegeven als, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 dus ons eerste gehele getal is 18 (n) onze tweede is 19, (18 + 1) en onze derde is 20, (18 + 2).
Drie opeenvolgende oneven gehele getallen zijn zodanig dat het kwadraat van het derde gehele getal 345 minder is dan de som van de vierkanten van de eerste twee. Hoe vind je de gehele getallen?
Er zijn twee oplossingen: 21, 23, 25 of -17, -15, -13 Als het kleinste geheel getal n is, dan zijn de anderen n + 2 en n + 4 Tolken de vraag, we hebben: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345 die uitklapt naar: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 kleur (wit) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Aftrekken n ^ 2 + 8n + 16 van beide kanten, vinden we: 0 = n ^ 2-4n-357 kleur (wit) (0) = n ^ 2-4n + 4 -361 kleur (wit) (0) = (n-2) ^ 2-19 ^ 2 kleur (wit) (0) = ((n-2) -19) ((n-2) +19) kleur (wit ) (0) = (n-21) (n + 17) Dus: n = 21 "" of "" n = -17 en de drie gehele getallen zijn: 21, 23, 25 of -17, -15,