Antwoord:
Uitleg:
Het eerste kwadrant
ook in het eerste kwadrant, en dus
Nu,
Als theta in het 2e kwadrant staat als
waarvoor de zonde is
Hier,
Laat zien dat cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Ik ben een beetje in de war als ik Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) maak, zal het negatief worden als cos (180 ° -theta) = - costheta in het tweede kwadrant. Hoe kan ik de vraag bewijzen?
Zie onder. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Laat vec (x) een vector zijn, zodanig dat vec (x) = (-1, 1), "en laat" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], dat is rotatie operator. Voor theta = 3 / 4pi zoek vec (y) = R (theta) vec (x)? Maak een schets met x, y en θ?
Dit blijkt een rotatie tegen de klok in te zijn. Kun je raden door hoeveel graden? Laat T: RR ^ 2 | -> RR ^ 2 een lineaire transformatie zijn, waarbij T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Merk op dat deze transformatie werd gerepresenteerd als de transformatiematrix R (theta). Wat het betekent is omdat R de rotatiematrix is die de rotatietransformatie vertegenwoordigt, we kunnen R vermenigvuldigen met vecx om deze transformatie te volbrengen. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> Voor een MxxK- en KxxN-matr
Hoe evalueer je de definitieve integrale int sin2theta uit [0, pi / 6]?
Int_0 ^ (pi / 6) sin2theta = 1/4 int_0 ^ (pi / 6) sin (2theta) d theta laat kleur (rood) (u = 2theta) kleur (rood) (du = 2d theta) kleur (rood) ( d theta = (du) / 2) De grenzen worden veranderd in kleur (blauw) ([0, pi / 3]) int_0 ^ (pi / 6) sin2thetad theta = int_color (blauw) 0 ^ kleur (blauw) (pi / 3) sincolor (rood) (u (du) / 2) = 1 / 2int_0 ^ (pi / 3) sinudu Zoals we weten theintsinx = -cosx = -1 / 2 (cos (pi / 3) -cos0) = -1 / 2 (1 / 2-1) = - 1/2 * -1 / 2 = 1/4 dus, int_0 ^ (pi / 6) sin2theta = 1/4