Antwoord:
Uitleg:
Gemiddelde waarde:
Dus de gemiddelde waarde is
Het oplossen
Antwoord:
Uitleg:
# "voor een functie f continu op het gesloten interval" #
# a, b "de gemiddelde waarde van f van x = a tot x = b is" #
# "het integraal" #
# • kleur (wit) (x) 1 / (b-a) int_a ^ bf (x) dx #
# RArr1 / (c-1) ^ c int_1 (4 / x ^ 2) dx = 1 / (c-1) int_1 ^ c (4x ^ -2) dx #
# = 1 / (c-1) - 4x ^ -1 _1 ^ c #
# = 1 / (c-1) - 4 / x _1 ^ c #
# = 1 / (c-1) (- 4 / C - (- 4)) #
# = - 4 / (c (c-1)) + (4c) / (c (c-1) #
#rArr (4c-4) / (c (c-1)) = 1 #
# RArrc ^ 2-5C + 4 = 0 #
#rArr (c-1) (c-4) = 0 #
# rArrc = 1 "of" c = 4 #
#c> 1rArrc = 4 #
Een lijn met de beste fit voorspelt dat wanneer x gelijk is aan 35, y gelijk is aan 34,785, maar y gelijk is aan 37. Wat is in dit geval de rest?
2.215 Residu wordt gedefinieerd als e = y - hat y = 37 - 34.785 = 2.215
Een auto daalt met een snelheid van 20% per jaar. Aan het einde van elk jaar is de auto vanaf het begin van het jaar 80% van zijn waarde waard. Welk percentage van de oorspronkelijke waarde is de auto waard aan het einde van het derde jaar?
51,2% Laten we dit modelleren met een afnemende exponentiële functie. f (x) = y keer (0.8) ^ x Waarbij y de startwaarde van de auto is en x de tijd is die verstreken is in jaren sinds het jaar van aankoop. Dus na 3 jaar hebben we het volgende: f (3) = y keer (0.8) ^ 3 f (3) = 0.512y Dus de auto heeft slechts 51,2% van zijn oorspronkelijke waarde na 3 jaar.
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in