Antwoord:
Uitleg:
De helling van een lijn vertelt in essentie hoe de waarde van
Met andere woorden, als u begint bij een punt dat op een lijn ligt, helpt de helling van de lijn u te vinden andere punten die op de lijn liggen.
Nu, dat weet u al
Laten we beginnen met de
#Deltax = 3 - a #
Doe hetzelfde voor de
#Deltay = b - 5 #
Omdat je dat weet
# "slope" = m = (Deltay) / (Deltax) #
je kunt zeggen dat je hebt
#m = (b-5) / (3 - a) #
Dat is de helling van de lijn. Met andere woorden, als u begint op elk punt dat is aan je lijn, je kunt een ander punt vinden dat op de lijn ligt door te bewegen
Dat is de reden waarom de helling van de lijn zou zijn rijzen over rennen.
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Lijn n loopt door punten (6,5) en (0, 1). Wat is het y-snijpunt van lijn k, als lijn k loodrecht staat op lijn n en door het punt (2,4) gaat?
7 is het y-snijpunt van lijn k Eerste, laten we de helling zoeken voor lijn n. (1-5) / (0-6) (-4) / - 6 2/3 = m De helling van lijn n is 2/3. Dat betekent dat de helling van lijn k, die loodrecht staat op lijn n, de negatieve reciprook is van 2/3, of -3/2. Dus de vergelijking die we tot nu toe hebben is: y = (- 3/2) x + b Om b of het y-snijpunt te berekenen, plug je gewoon (2,4) in de vergelijking. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Het y-snijpunt is dus 7
Loopt door (2,4) en (4,10) Zoek de helling van de lijn die door de twee punten gaat?
Helling = m = 3 Gebruik de hellingsformule: m = (y_2-y_1) / (x_2-x_1) Gegeven (2,4) en (4,10) Laat (kleur (rood) (2), kleur (blauw) ( 4)) -> (kleur (rood) (x_1), kleur (blauw) (y_1)) (kleur (rood) (4), kleur (blauw) 10) -> (kleur (rood) (x_2), kleur ( blauw) (y_2)) Vervangen voor de hellingformule ... m = kleur (blauw) (10-4) / kleur (rood) (4-2) = kleur (blauw) 6 / kleur (rood) (2) = 3