Antwoord:
a) de steen bereikt de grond opnieuw
b) de steen bereikt
Uitleg:
Eerst gaan we ervan uit dat de grond er is
Dit laat ons zien dat er twee oplossingen voor zijn
Deel b) vraagt ons om op te lossen
Deze keer zullen we de kwadratische formule gebruiken, dus we moeten de vergelijking in de standaardvorm zetten:
Grafiek van de vergelijking zien we dat de curve kruist
grafiek {30x-5x ^ 2 -1, 7, -3, 50}
De grafiek van een kwadratische functie heeft x-onderschept -2 en 7/2, hoe schrijf je een kwadratische vergelijking die deze wortels heeft?
Zoek f (x) = ax ^ 2 + bx + c = 0 met de 2 echte wortels: x1 = -2 en x2 = 7/2. Gegeven 2 echte wortels c1 / a1 en c2 / a2 van een kwadratische vergelijking ax ^ 2 + bx + c = 0, zijn er 3 relaties: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Diagonale som). In dit voorbeeld zijn de 2 echte wortels: c1 / a1 = -2/1 en c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. De kwadratische vergelijking is: Antwoord: 2x ^ 2 - 3x - 14 = 0 (1) Controle: vind de 2 echte wortels van (1) door de nieuwe AC-methode. Geconverteerde vergelijking: x ^ 2 - 3x - 28 = 0 (2). Los vergelijking (2) op. Wortels hebben verschill
De wortels van de kwadratische vergelijking 2x ^ 2-4x + 5 = 0 zijn alfa (a) en bèta (b). (a) Laat zien dat 2a ^ 3 = 3a-10 (b) Vind de kwadratische vergelijking met wortels 2a / b en 2b / a?
Zie hieronder. Zoek eerst de wortels van: 2x ^ 2-4x + 5 = 0 Gebruik de kwadratische formule: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alpha = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 kleur (blauw) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (blauw) (= (- 14 + 3isqrt (6)) / 2) b)
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.