Antwoord:
-625
Uitleg:
We hebben een geometrische reeks die volgt
Som van een meetkundige reeks wordt gegeven door:
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
Hoe vind je de eerste drie termen van een Maclaurin-serie voor f (t) = (e ^ t - 1) / t met behulp van de Maclaurin-serie van e ^ x?
We weten dat de Maclaurin-reeks van e ^ x sum_ (n = 0) ^ oox ^ n / (n!) Is. We kunnen deze reeks ook afleiden door de Maclaurin-uitbreiding van f (x) = sum_ (n = 0) ^ te gebruiken oof ^ ((n)) (0) x ^ n / (n!) en het feit dat alle derivaten van e ^ x nog steeds e ^ x en e ^ 0 = 1 zijn. Vervang de bovenstaande reeks nu in (e ^ x-1) / x = (sum_ (n = 0) ^ oo (x ^ n / (n!)) - 1) / x = (1 + sum_ (n = 1) ^ oo (x ^ n / (n!)) - 1) / x = (sum_ (n = 1) ^ oo (x ^ n / (n!))) / X = sum_ (n = 1) ^ oox ^ (n-1) / (n!) Als u wilt dat de index begint bij i = 0, vervangt u eenvoudig n = i + 1: = sum_ (i = 0) ^ oox ^ i / ((i + 1) !) Beoordeel
De eerste term van een geometrische reeks is 4 en de vermenigvuldiger of ratio is -2. Wat is de som van de eerste 5 termen van de reeks?
Eerste term = a_1 = 4, gemeenschappelijke ratio = r = -2 en aantal termen = n = 5 Som van geometrische reeksen tot n tems wordt gegeven door S_n = (a_1 (1-r ^ n)) / (1-r ) Waar S_n de som tot n termen is, is n aantal termen, a_1 is de eerste term, r is de gemeenschappelijke ratio. Hier is a_1 = 4, n = 5 en r = -2 betekent S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Vandaar dat de som 44 is