Antwoord:
Uitleg:
Stel je voor dat de gelijkzijdige helft door een hoogte wordt gesneden. Op deze manier zijn er twee rechthoekige driehoeken die het hoekpatroon hebben
Als de hoogte wordt ingetrokken, wordt de basis van de driehoek gehalveerd, waardoor twee congruente segmenten met lengte overblijven
Dit is alles wat we moeten weten, omdat het gebied van een driehoek dat is
We weten dat de basis is
Verwijzen naar deze foto als je nog steeds in de war bent:
De hoogte van een driehoek neemt toe met een snelheid van 1,5 cm / min, terwijl het oppervlak van de driehoek met een snelheid van 5 vierkante cm / min toeneemt. Met welk tempo verandert de voet van de driehoek wanneer de hoogte 9 cm is en het gebied 81 vierkante cm is?
Dit is een probleem met de bijbehorende tarieven (van verandering). De variabelen die van belang zijn, zijn a = hoogte A = gebied en omdat het gebied van een driehoek A = 1 / 2ba is, hebben we b = basis nodig. De opgegeven snelheden zijn in eenheden per minuut, dus de (onzichtbare) onafhankelijke variabele is t = tijd in minuten. We krijgen: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min En we worden gevraagd om (db) / dt te vinden als a = 9 cm en A = 81cm "" ^ 2 A = 1 / 2ba, differentiërend ten opzichte van t, we krijgen: d / dt (A) = d / dt (1 / 2ba). We hebben de productregel aan de rech
Wat is het gebied van een gelijkzijdige driehoek met een zijlengte van 4?
A = 6.93 of 4sqrt3 A = sqrt3 / 4a ^ 2 ararrzijde waarvan 4 A = sqrt3 / (4) 4 ^ 2 A = sqrt3 / (4) 16 A = (16sqrt3) / 4 A = (cancel4 (4) sqrt3) / cancel4 A = 4sqrt3 sqrt3 rarr 1.73205080757 4sqrt3 = 6.92820323028 A = 6.93
Een driehoek heeft vertices A, B en C.Vertex A heeft een hoek van pi / 2, hoekpunt B heeft een hoek van (pi) / 3 en het gebied van de driehoek is 9. Wat is het gebied van de cirkel van de driehoek?
Ingeschreven cirkel Oppervlakte = 4.37405 "" vierkante eenheden Los op voor de zijden van de driehoek met behulp van de gegeven Oppervlakte = 9 en hoeken A = pi / 2 en B = pi / 3. Gebruik de volgende formules voor Gebied: Oppervlakte = 1/2 * a * b * sin C Gebied = 1/2 * b * c * sin A Gebied = 1/2 * a * c * zonde B zodat we 9 = 1 hebben / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Gelijktijdige oplossing met behulp van deze vergelijkingen resultaat tot a = 2 * root4 108 b = 3 * root4 12 c = root4 108 los de helft van de perimeter op ss = (a + b + c) /2=7.62738 Gebruik de