Volgens sine law we weten
# A / sina = b / sinB = c / sinc = 2R #
Nu
1e deel
# (B ^ 2-c ^ 2) Cota #
# = (4R 2sin ^ ^ 2B-4R 2sin ^ ^ 2C) Cota #
# = 4R ^ 2 (02/01 (1-COS2B) -1/2 (1-cos2C) cota #
# = ^ 2xx1 4R / 2 (cos2C-COS2B) cota #
# = ^ 2R 2xx2sin (B + C) sin (B-C) cosa / sina #
# = ^ 4R 2sin (pi-A) sin (B-C) cosa / sina #
# = ^ 4R 2sinAsin (B-C) cosa / sina #
# = ^ 4R 2sin (B-C) cosa #
# = 4R ^ 2 (sinBcosCcosA-cosBsinCcosA) #
evenzo
2de deel # = (C ^ a ^ 2-2) cotB #
# = 4R ^ 2 (sinCcosAcosB-cosCsinAcosB) #
3e deel # = (A ^ 2 B ^ 2) cotC #
# = 4R ^ 2 (sinAcosBcosC-cosAsinBcosC) #
We voegen drie delen toe die we krijgen
Hele uitdrukking
# (B ^ 2-c ^ 2) Cota + (c ^ a ^ 2-2) cotB + (a ^ 2 B ^ 2) cotC = 0 #