Het bereik van de gegeven functie kan worden bepaald door dit te vergelijken met de grafiek van
De gegeven functie is een verticale verschuiving naar 1. Daarom zou het bereik (-1,
U kunt ook x en y uitwisselen en het domein van de nieuwe functie vinden. Dienovereenkomstig, x =
Het domein van deze functie is alle reële waarden van x groter dan -1, dat is (-1,
Laat het domein van f (x) [-2.3] zijn en het bereik is [0,6]. Wat is het domein en bereik van f (-x)?
Het domein is het interval [-3, 2]. Het bereik is het interval [0, 6]. Precies zoals het is, is dit geen functie, omdat het domein slechts het getal -2.3 is, terwijl het bereik een interval is. Maar in de veronderstelling dat dit slechts een typfout is, en het werkelijke domein het interval [-2, 3] is, is dit als volgt: Laat g (x) = f (-x). Aangezien f zijn onafhankelijke variabele vereist om alleen waarden in het interval [-2, 3] te nemen, moet -x (negatief x) zich binnen [-3, 2] bevinden, wat het domein van g is. Aangezien g zijn waarde verkrijgt via functie f, blijft het bereik hetzelfde, ongeacht wat we als de onafhank
Wat is de grootte van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? Wat is de richting van de versnelling van het blok wanneer het op het punt x = 0,24 m, y = 0,52 m is? (Zie de details).
Omdat x en y orthogonaal ten opzichte van elkaar zijn, kunnen deze onafhankelijk worden behandeld. We weten ook dat vecF = -gradU: .x-component van tweedimensionale kracht F_x = - (delU) / (delx) F_x = -del / (delx) [(5.90 Jm ^ -2) x ^ 2- ( 3,65 Jm ^ -3) y ^ 3] F_x = -11.80x x-component van versnelling F_x = ma_x = -11.80x 0.0400a_x = -11.80x => a_x = -11.80 / 0.0400x => a_x = -295x At het gewenste punt a_x = -295xx0.24 a_x = -70.8 ms ^ -2 Evenzo is de y-component van kracht F_y = -del / (dely) [(5.90 Jm ^ -2) x ^ 2- (3.65 Jm ^ -3) y ^ 3] F_y = 10.95y ^ 2 y-component van versnelling F_y = ma_ = 10.95y ^ 2 0.0400a_y =
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}