Er zijn twee oplossingen:
De redenering is de volgende:
Ten eerste kun je beide leden van de ongelijkheid vereenvoudigen door 2, te verkrijgen
Vervolgens moeten we de definitie toepassen van de absolute waarde die is:
als
als
Als we deze definitie toepassen op ons probleem, hebben we:
als
als
Sorry maar ik weet niet hoe ik de grafiek moet invoegen. Hoe dan ook, het is heel gemakkelijk om het weer te geven als je de oplossing kent: je hoeft alleen een horizontale lijn te tekenen, het punt (-1) aan de linkerkant en het punt (+9) aan de rechterkant (met een normale afstand tussen beide), en trek dan het gedeelte van de lijn van de linker uiterste tot het punt (-1) dikker, en teken ook dikker het gedeelte van de lijn vanaf het punt (+9) tot de rechter uiterste.
De grafiek van een kwadratische functie heeft een hoekpunt op (2,0). een punt op de grafiek is (5,9) Hoe vindt u het andere punt? Leg uit hoe?
Een ander punt op de parabool dat de grafiek van de kwadratische functie is, is (-1, 9). We krijgen te horen dat dit een kwadratische functie is. Het eenvoudigste begrip hiervan is dat het kan worden beschreven door een vergelijking in de vorm: y = ax ^ 2 + bx + c en heeft een grafiek die een parabool met verticale as is. Er wordt ons verteld dat de vertex op (2, 0) staat. Daarom wordt de as gegeven door de verticale lijn x = 2 die door de top loopt. De parabool is bilateraal symmetrisch rond deze as, dus het spiegelbeeld van het punt (5, 9) bevindt zich ook op de parabool. Dit spiegelbeeld heeft dezelfde y-coördinaat
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!
Oplossen van kwadratische ongelijkheden. Hoe een systeem van kwadratische ongelijkheden op te lossen, met behulp van de dubbele nummerlijn?
We kunnen de dubbele-nummerlijn gebruiken om elk systeem van 2 of 3 kwadratische ongelijkheden op te lossen in één variabele (geschreven door Nghi H Nguyen). Een systeem van 2 kwadratische ongelijkheden in één variabele op te lossen met behulp van een dubbele-cijferlijn. Voorbeeld 1. Los het systeem op: f (x) = x ^ 2 + 2x - 3 <0 (1) g (x) = x ^ 2 - 4x - 5 <0 (2) Eerste oplossing f (x) = 0 - -> 2 echte wortels: 1 en -3 Tussen de 2 echte wortels, f (x) <0 Los g (x) = 0 -> 2 echte wortels op: -1 en 5 Tussen de 2 echte wortels, g (x) <0 Grafiek de 2 oplossingen ingesteld op een dubbele num