Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
Deze vergelijking staat in het standaard lineaire formulier. De standaardvorm van een lineaire vergelijking is:
Waar, zo mogelijk,
De helling of gradiënt voor een vergelijking in standaard lineaire vorm is:
Vervanging van de coëfficiënten uit de vergelijking in het probleem geeft:
De
De
De trappen in een huis hebben een helling van 1/2. Als de trap een opkomst van 15 cm heeft, wat is dan het verloop van de trap?
Helling = stijgen / rennen 1/2 = stijgen / rennen Rennen = stijgen: (1/2) = 30 cm
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.
Er loopt een lijn door (4, 3) en (2, 5). Een tweede regel passeert (5, 6). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(3,8) Dus moeten we eerst de richtingsvector vinden tussen (2,5) en (4,3) (2,5) - (4,3) = (- 2,2) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (5,6) een positie op de vectorvergelijking is, zodat we die als onze positievector kunnen gebruiken en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (5, 6) + s (-2,2) Om een ander punt op de lijn te vinden, vervang je gewoon elk getal in s behalve 0, dus kies 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Dus (3,8) is nog een ander punt.