Antwoord:
Uitleg:
We hebben de som van een getal,
Daarom kunnen we elke waarde kiezen die minstens 18 is en aan de voorwaarde voldoen.
De som van de cijfers van een tweecijferig cijfer is 8. Als de cijfers omgekeerd zijn, is het nieuwe nummer 18 groter dan het oorspronkelijke nummer. Hoe vind je het originele cijfer?
Los vergelijkingen op in de cijfers om het oorspronkelijke nummer te vinden was 35 Stel dat de originele cijfers a en b zijn. Dan krijgen we: {(a + b = 8), ((10b + a) - (10a + b) = 18):} De tweede vergelijking vereenvoudigt tot: 9 (ba) = 18 Vandaar: b = a + 2 Dit substitueren in de eerste vergelijking krijgen we: a + a + 2 = 8 Vandaar a = 3, b = 5 en het originele getal was 35.
De som van de cijfers van een driecijferig nummer is 15. Het cijfer van het apparaat is minder dan de som van de andere cijfers. De tientallen cijfers zijn het gemiddelde van de andere cijfers. Hoe vind je het nummer?
A = 3 ";" b = 5 ";" c = 7 Gegeven: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ Overwegen vergelijking (3) -> 2b = (a + c) Schrijf vergelijking (1) als (a + c) + b = 15 Door te substitueren wordt dit 2b + b = 15 kleuren (blauw) (=> b = 5) '~~~~~~~~~~~~~~ Nu hebben we: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~
Product van een positief aantal van twee cijfers en het cijfer in de plaats van de eenheid is 189. Als het cijfer in de plaats van de tien tweemaal zo groot is als dat in de plaats van de eenheid, wat is dan het cijfer in de plaats van het apparaat?
3. Merk op dat de tweecijferige nummers. die aan de tweede voorwaarde voldoen (cond.) zijn, 21,42,63,84. Hiervan, sinds 63xx3 = 189, concluderen we dat het tweecijferige nummer. is 63 en het gewenste cijfer in de eenheid is 3. Om het probleem methodisch op te lossen, stel dat het cijfer van de plaats van tien x is, en dat van eenheden, y. Dit betekent dat het tweecijferige nummer. is 10x + y. "De" 1 ^ (st) "cond." RArr (10x + y) y = 189. "De" 2 ^ (nd) "cond." RArr x = 2y. Sub.ing x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21j ^ 2 = 189 rArr y ^ 2 = 189/21 = 9 rArr y = + - 3