Hoe onderscheid je f (x) = x ^ 3sqrt (x-2) sinx met behulp van de productregel?

Hoe onderscheid je f (x) = x ^ 3sqrt (x-2) sinx met behulp van de productregel?
Anonim

Antwoord:

#f '(x) = 3x ^ 2sqrt (x-2) sinx + (x ^ 3sinx) / (2sqrt (x-2)) + x ^ 3sqrt (x-2) cosx #

Uitleg:

Als #f (x) = g (x) h (x) j (x) #, dan #f '(x) = g (x) h (x) j (x) + g (x) h (x) j (x) + g (x) h (x) j (x) #

#G (x) = x ^ 3 #

#G '(x) = 3x ^ 2 #

#h (x) = sqrt (x-2) = (x-2) ^ (1/2) #

#h '(x) = 1/2 * (x-2) ^ (- 02/01) * d / dx x-2 #

#color (wit) (h '(x)) = (x-2) ^ (- 02/01) / 2 * 1 #

#color (wit) (h '(x)) = (x-2) ^ (- 02/01) / 2 #

#color (wit) (h '(x)) = 1 / (2sqrt (x-2)) #

#J (x) = sinx #

#J '(x) = cosx #

#f '(x) = 3x ^ 2sqrt (x-2) sinx + x ^ 3 1 / (2sqrt (x-2)) sinx + x ^ 3sqrt (x-2) cosx #

#f '(x) = 3x ^ 2sqrt (x-2) sinx + (x ^ 3sinx) / (2sqrt (x-2)) + x ^ 3sqrt (x-2) cosx #