Zoek f (x) = ax ^ 2 + bx + c = 0 met de 2 echte wortels: x1 = -2 en x2 = 7/2.
Gegeven 2 echte wortels c1 / a1 en c2 / a2 van een kwadratische vergelijking ax ^ 2 + bx + c = 0, zijn er 3 relaties:
a1 a2 = a
c1 c2 = c
a1 c2 + a2c1 = -b (Diagonale som).
In dit voorbeeld zijn de 2 echte wortels: c1 / a1 = -2/1 en c2 / a2 = 7/2.
a = 1 2 = 2
c = -2 7 = -14
-b = a1c2 + a2c1 = -2 2 + 1 7 = -4 + 7 = 3.
De kwadratische vergelijking is:
Antwoord: 2x ^ 2 - 3x - 14 = 0 (1)
Controle: vind de 2 echte wortels van (1) door de nieuwe AC-methode.
Geconverteerde vergelijking: x ^ 2 - 3x - 28 = 0 (2). Los vergelijking (2) op. Wortels hebben verschillende tekens. Compose-factorparen van a c = -28. Ga verder: (-1, 28) (- 2, 14) (- 4, 7). Deze laatste som is (-4 + 7 = 3 = -b). Dan zijn de 2 echte wortels: y1 = -4 en y2 = 7. Terug naar de oorspronkelijke vergelijking (1), zijn de 2 echte wortels: x1 = y1 / a = -4/2 = -2 en x2 = y2 / a = 7/2. Correct.
De grafiek van een kwadratische functie heeft een hoekpunt op (2,0). een punt op de grafiek is (5,9) Hoe vindt u het andere punt? Leg uit hoe?
Een ander punt op de parabool dat de grafiek van de kwadratische functie is, is (-1, 9). We krijgen te horen dat dit een kwadratische functie is. Het eenvoudigste begrip hiervan is dat het kan worden beschreven door een vergelijking in de vorm: y = ax ^ 2 + bx + c en heeft een grafiek die een parabool met verticale as is. Er wordt ons verteld dat de vertex op (2, 0) staat. Daarom wordt de as gegeven door de verticale lijn x = 2 die door de top loopt. De parabool is bilateraal symmetrisch rond deze as, dus het spiegelbeeld van het punt (5, 9) bevindt zich ook op de parabool. Dit spiegelbeeld heeft dezelfde y-coördinaat
De wortels van de kwadratische vergelijking 2x ^ 2-4x + 5 = 0 zijn alfa (a) en bèta (b). (a) Laat zien dat 2a ^ 3 = 3a-10 (b) Vind de kwadratische vergelijking met wortels 2a / b en 2b / a?
Zie hieronder. Zoek eerst de wortels van: 2x ^ 2-4x + 5 = 0 Gebruik de kwadratische formule: x = (- (- 4) + - sqrt ((- 4) ^ 2-4 (2) (5))) / 4 x = (4 + -sqrt (-24)) / 4 x = (4 + -2isqrt (6)) / 4 = (2 + -isqrt (6)) / 2 alpha = (2 + isqrt (6)) / 2 beta = (2-isqrt (6)) / 2 a) 2a ^ 3 = 3a-10 2 ((2 + isqrt (6)) / 2) ^ 3 = 3 ((2 + isqrt (6)) / 2 ) -10 2 ((2 + isqrt (6)) / 2) ^ 3 = (2 (2 + isqrt (6)) (2 + isqrt (6)) (2 + isqrt (6))) / 8 = 2 * (- 28 + 6isqrt (6)) / 8 kleur (blauw) (= (- 14 + 3isqrt (6)) / 2) 3 ((2 + isqrt (6)) / 2) -10 = (6 + 3isqrt (6)) / 2-10 = (6 + 3isqrt (6) -20) / 2color (blauw) (= (- 14 + 3isqrt (6)) / 2) b)
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.