Antwoord:
domein:
bereik:
Uitleg:
Onthoud eenvoudig dat het domein van elke functie de waarden zijn van
Functie:
Nu, herschikken onze functie als:
De bijbehorende
Ieder
Gefeliciteerd, je hebt net het domein gevonden (de waarden van
Nu gaan we verder met het vinden van de waarden van
Beginnend vanaf
We zien dat elke echte waarde van
Inhoudende dat
De Main Street Market verkoopt sinaasappelen voor $ 3,00 voor vijf pond en appels voor $ 3,99 voor drie pond. De Off Street Market verkoopt sinaasappels voor $ 2,59 voor vier pond en appels voor $ 1,98 voor twee pond. Wat is de eenheidsprijs voor elk artikel in elke winkel?
Zie een oplossingsprocedure hieronder: Main Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_m O_m = ($ 3,00) / (5 lb) = ($ 0,60) / (lb) = $ 0,60 per pond Appelen - Laten we de eenheidsprijs noemen: A_m A_m = ($ 3,99) / (3 lb) = ($ 1,33) / (lb) = $ 1,33 per pond Off Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_o O_o = ($ 2,59) / (4 lb) = ($ 0,65) / (lb) = $ 0,65 per pond Appels - Laten we de eenheidsprijs noemen: A_o A_o = ($ 1,98) / (2 lb) = ($ 0,99) / (lb) = $ 0,99 per pond
Laat het domein van f (x) [-2.3] zijn en het bereik is [0,6]. Wat is het domein en bereik van f (-x)?
Het domein is het interval [-3, 2]. Het bereik is het interval [0, 6]. Precies zoals het is, is dit geen functie, omdat het domein slechts het getal -2.3 is, terwijl het bereik een interval is. Maar in de veronderstelling dat dit slechts een typfout is, en het werkelijke domein het interval [-2, 3] is, is dit als volgt: Laat g (x) = f (-x). Aangezien f zijn onafhankelijke variabele vereist om alleen waarden in het interval [-2, 3] te nemen, moet -x (negatief x) zich binnen [-3, 2] bevinden, wat het domein van g is. Aangezien g zijn waarde verkrijgt via functie f, blijft het bereik hetzelfde, ongeacht wat we als de onafhank
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}