Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
De formule voor het vinden van de helling van een lijn is:
Waar
Vervanging van de waarden uit de punten in het probleem geeft:
Lijn n loopt door punten (6,5) en (0, 1). Wat is het y-snijpunt van lijn k, als lijn k loodrecht staat op lijn n en door het punt (2,4) gaat?
7 is het y-snijpunt van lijn k Eerste, laten we de helling zoeken voor lijn n. (1-5) / (0-6) (-4) / - 6 2/3 = m De helling van lijn n is 2/3. Dat betekent dat de helling van lijn k, die loodrecht staat op lijn n, de negatieve reciprook is van 2/3, of -3/2. Dus de vergelijking die we tot nu toe hebben is: y = (- 3/2) x + b Om b of het y-snijpunt te berekenen, plug je gewoon (2,4) in de vergelijking. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Het y-snijpunt is dus 7
Wat is de helling van een lijn die door het punt loopt (-1, 1) en evenwijdig loopt aan een lijn die doorloopt (3, 6) en (1, -2)?
Je helling is (-8) / - 2 = 4. Hellingen van parallelle lijnen zijn hetzelfde als ze dezelfde stijging hebben en in een grafiek lopen. De helling kan worden gevonden met "slope" = (y_2-y_1) / (x_2-x_1). Daarom krijgen we, als we de nummers van de lijn evenwijdig aan het origineel plaatsen, "slope" = (-2 - 6) / (1-3). Dit wordt dan vereenvoudigd tot (-8) / (- 2). Je stijging of het bedrag waarmee het omhoog gaat is -8 en je loopt of het bedrag waar het recht op gaat is -2.
Loopt door (2,4) en (4,10) Zoek de helling van de lijn die door de twee punten gaat?
Helling = m = 3 Gebruik de hellingsformule: m = (y_2-y_1) / (x_2-x_1) Gegeven (2,4) en (4,10) Laat (kleur (rood) (2), kleur (blauw) ( 4)) -> (kleur (rood) (x_1), kleur (blauw) (y_1)) (kleur (rood) (4), kleur (blauw) 10) -> (kleur (rood) (x_2), kleur ( blauw) (y_2)) Vervangen voor de hellingformule ... m = kleur (blauw) (10-4) / kleur (rood) (4-2) = kleur (blauw) 6 / kleur (rood) (2) = 3