(Vorige
Laten we een voorbeeld nemen van een gasachtig evenwicht:
Bij evenwicht,
Wanneer druk is veranderd, misschien denken dat
Dit gebeurt echter niet!
Wanneer het volume wordt gewijzigd om een drukverandering te veroorzaken, ja, zal de concentratie veranderen.
En omdat er aan elke kant een gelijk aantal mollen is, zullen deze veranderingen worden geannuleerd (omdat je een constante naar
Het is onaangetast, dus het systeem is nog steeds in evenwicht en de positie verandert niet.
Het volume van een ingesloten gas (bij een constante druk) varieert direct als de absolute temperatuur. Als de druk van een monster van 3,46-L neongas bij 302 ° K 0,926 atm is, wat zou het volume dan bij een temperatuur van 338 ° K zijn als de druk niet verandert?
3.87L Interessant praktisch (en heel gebruikelijk) chemieprobleem voor een algebraïsch voorbeeld! Deze geeft niet de werkelijke Ideal Gas Law-vergelijking, maar laat zien hoe een deel ervan (Charles 'Law) is afgeleid van de experimentele gegevens. Algebraïsch wordt ons verteld dat de snelheid (helling van de lijn) constant is ten opzichte van de absolute temperatuur (de onafhankelijke variabele, meestal de x-as) en het volume (afhankelijke variabele of y-as). Het bepalen van een constante druk is noodzakelijk voor de juistheid, omdat het ook in werkelijkheid bij de gasvergelijkingen is betrokken. Ook kan de f
Wanneer een voorraad waterstofgas in een 4-liter-container op 320 K wordt gehouden, oefent het een druk uit van 800 torr. De voorraad wordt verplaatst naar een container van 2 liter en gekoeld tot 160 K. Wat is de nieuwe druk van het beperkte gas?
Het antwoord is P_2 = 800 t o rr. De beste manier om dit probleem te benaderen is door de ideale gaswet te gebruiken, PV = nRT. Omdat de waterstof van een container naar een andere wordt verplaatst, nemen we aan dat het aantal mol constant blijft. Dit geeft ons 2 vergelijkingen P_1V_1 = nRT_1 en P_2V_2 = nRT_2. Omdat R ook een constante is, kunnen we nR = (P_1V_1) / T_1 = (P_2V_2) / T_2 -> de gecombineerde gaswet schrijven. Daarom hebben we P_2 = V_1 / V_2 * T_2 / T_1 * P_1 = (4L) / (2L) * (160K) / (320K) * 800t o rr = 800t o rr.
Een mengsel van twee gassen heeft een totale druk van 6,7 atm. Als één gas een partiële druk van 4,1 atm heeft, wat is dan de partiële druk van het andere gas?
De partiële druk van het andere gas is kleur (bruin) (2,6 atm.) Voordat we beginnen, laat me de Dalton-vergelijking van de wet van de partiële druk introduceren: waarbij P_T de totale druk van alle gassen in het mengsel is en P_1, P_2, enz. De partiële druk van elk gas. Op basis van wat u mij hebt gegeven, weten we de totale druk, P_T, en een van de partiële drukken (ik zeg gewoon P_1). We willen P_2 vinden, dus alles wat we moeten doen is herschikken naar vergelijking om de waarde van de tweede druk te verkrijgen: P_2 = P_T - P_1 P_2 = 6.7 atm - 4.1 atm Daarom P_2 = 2.6 atm