Antwoord:
ik vond
Uitleg:
Je vergelijkingslijn
Dus je lijn zal een vergelijking hebben:
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
De vergelijking van de lijn is -3y + 4x = 9. Hoe schrijf je de vergelijking van een lijn die parallel is aan de lijn en door het punt loopt (-12,6)?
Y-6 = 4/3 (x + 12) We zullen het puntgradiënt-formulier gebruiken omdat we al een punt hebben waar de lijn naar toe gaat (-12,6) en het woord parallel betekent dat het verloop van de twee lijnen moet hetzelfde zijn. om de helling van de parallelle lijn te vinden, moeten we de helling van de lijn vinden die er parallel mee loopt. Deze lijn is -3y + 4x = 9 wat kan worden vereenvoudigd tot y = 4 / 3x-3. Dit geeft ons de gradiënt van 4/3 Nu om de vergelijking te schrijven die we in deze formule plaatsen y-y_1 = m (x-x_1), waar (x_1, y_1) het punt is dat ze doorlopen en m het verloop is.
Wat is de vergelijking van de lijn die passeert (1, 2) en is parallel aan de lijn waarvan de vergelijking 2x + y - 1 = 0 is?
Kijk eens: grafisch: