De domein van een functie
De reeks van een functie
De waarde van
De grafiek van y = g (x) wordt hieronder gegeven. Schets een nauwkeurige grafiek van y = 2 / 3g (x) +1 op dezelfde reeks assen. Label de assen en ten minste 4 punten op uw nieuwe grafiek. Geef het domein en bereik van het origineel en de getransformeerde functie?
Zie de uitleg hieronder. Voor: y = g (x) "domein" is x in [-3,5] "bereik" is y in [0,4.5] Na: y = 2 / 3g (x) +1 "domein" is x in [ -3,5] "bereik" is y in [1,4] Dit zijn de 4 punten: (1) Voor: x = -3, =>, y = g (x) = g (-3) = 0 Na : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (-3,1) (2) Voor: x = 0, =>, y = g (x) = g (0) = 4.5 Na: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Het nieuwpunt is (0,4) (3) Voor: x = 3, =>, y = g (x) = g (3) = 0 Na: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Het nieuwpunt is (3,1) (4) Voor: x = 5, = >, y = g (x) = g (5) = 1 Na: y = 2 / 3g (x) + 1
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in
Schets de grafiek van y = 8 ^ x met de coördinaten van punten waar de grafiek de coördinaatassen kruist. Beschrijf de transformatie die de grafiek Y = 8 ^ x omzet in de grafiek y = 8 ^ (x + 1) volledig?
Zie hieronder. Exponentiële functies zonder verticale transformatie overschrijden nooit de x-as. Als zodanig heeft y = 8 ^ x geen x-intercepts. Het heeft een y-snijpunt op y (0) = 8 ^ 0 = 1. De grafiek moet op het volgende lijken. grafiek {8 ^ x [-10, 10, -5, 5]} De grafiek van y = 8 ^ (x + 1) is de grafiek van y = 8 ^ x 1 eenheid naar links verplaatst, zodat het y- onderscheppen ligt nu op (0, 8). Je ziet ook dat y (-1) = 1. grafiek {8 ^ (x + 1) [-10, 10, -5, 5]} Hopelijk helpt dit!