Antwoord:
Eindpunten
Uitleg:
Ik ben kennelijk een expert in het beantwoorden van twee jaar oude vragen. Laten we doorgaan.
De hoogte tot en met C is de loodlijn op AB tot C.
Er zijn een paar manieren om dit te doen. We kunnen de helling van AB berekenen als
Laten we de voet van de loodlijn noemen
Dat is een vergelijking. De andere vergelijking zegt
Ze ontmoeten wanneer
De lengte CF van de hoogte is
Laten we dit controleren door het gebied te berekenen met behulp van de schoenveterformule en dan op te lossen voor de hoogte. A (3,5) B (2,9), C (4,8)
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Twee ruiten hebben zijden met een lengte van 4. Als een ruit een hoek heeft met een hoek van pi / 12 en de andere een hoek heeft met een hoek van (5pi) / 12, wat is het verschil tussen de gebieden van de ruiten?
Verschil in Oppervlakte = 11.31372 "" vierkante eenheden Om het gebied van een ruit te berekenen Gebruik de formule Gebied = s ^ 2 * sin theta "" waar s = zijkant van de ruit en theta = hoek tussen twee zijden Bereken het gebied van ruit 1. Area = 4 * 4 * sin ((5pi) / 12) = 16 * sin 75^@=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Een driehoek heeft vertices A, B en C.Vertex A heeft een hoek van pi / 2, hoekpunt B heeft een hoek van (pi) / 3 en het gebied van de driehoek is 9. Wat is het gebied van de cirkel van de driehoek?
Ingeschreven cirkel Oppervlakte = 4.37405 "" vierkante eenheden Los op voor de zijden van de driehoek met behulp van de gegeven Oppervlakte = 9 en hoeken A = pi / 2 en B = pi / 3. Gebruik de volgende formules voor Gebied: Oppervlakte = 1/2 * a * b * sin C Gebied = 1/2 * b * c * sin A Gebied = 1/2 * a * c * zonde B zodat we 9 = 1 hebben / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Gelijktijdige oplossing met behulp van deze vergelijkingen resultaat tot a = 2 * root4 108 b = 3 * root4 12 c = root4 108 los de helft van de perimeter op ss = (a + b + c) /2=7.62738 Gebruik de