Antwoord:
Het bereik is 1,
Uitleg:
Wanneer ik voor het eerst naar dit probleem kijk, zou ik me concentreren op het domein. Het hebben van x onder een vierkantswortel resulteert meestal in een beperkt domein. Dit is belangrijk omdat als punten niet in het domein bestaan, we ervoor moeten zorgen dat we ze ook niet in het bereik opnemen!
Het domein voor
Nu moeten we kijken naar het eindgedrag om te zien waar de functie naartoe gaat
g (x) =
g (x) =
En 'plug in' negatieve en positieve oneindigheid
g (-
g (
g (
g (
Nu moeten we het minimum vinden dat de functie is. Onthoud dat
Sinds
f (
f (
f (
f (
f (
Dus het bereik is 1,
Antwoord:
1, positieve oneindigheid)
Uitleg:
Wanneer ik deze functie in kaart breng (ik raad Desmos aan als u deze niet in een grafiek hebt staan), kunt u zien dat het laagste deel van de functie 1 raakt op de y-as en blijft positief tot oneindig. Een gemakkelijke manier om dit zonder een grafiek te vinden, is door te kijken of je beperkingen hebt in de vergelijking. Omdat er geen vierkante wortels van negatieve getallen zijn, weten we dat als we de exponent op 0 zetten, we de laagst mogelijke x-waarde kunnen vinden.
Nu we de domeinbeperking hebben, kunnen we dit gebruiken voor de oorspronkelijke vergelijking
Nu hebben we vastgesteld dat de laagst mogelijke y-waarde 1 is, en er is geen beperking over hoe hoog de y-waarden kunnen zijn. Daarom is het bereik van positief 1 (inclusief) tot positief oneindig.
Wat is het domein en bereik van 3x-2 / 5x + 1 en het domein en bereik van de inverse van de functie?
Domein is alle realen behalve -1/5, wat het bereik van de inverse is. Bereik is alle realen behalve 3/5, wat het domein van de inverse is. f (x) = (3x-2) / (5x + 1) is gedefinieerd en reële waarden voor alle x behalve -1/5, dus dat is het domein van f en het bereik van f ^ -1 Instelling y = (3x -2) / (5x + 1) en oplossen voor x opbrengsten 5xy + y = 3x-2, dus 5xy-3x = -y-2, en daarom (5y-3) x = -y-2, dus uiteindelijk x = (- y2) / (5y-3). We zien dat y! = 3/5. Dus het bereik van f is alle realen behalve 3/5. Dit is ook het domein van f ^ -1.
Als de functie f (x) een domein heeft van -2 <= x <= 8 en een bereik van -4 <= y <= 6 en de functie g (x) wordt gedefinieerd door de formule g (x) = 5f ( 2x)), wat is dan het domein en het bereik van g?
Hieronder. Gebruik basisfunctietransformaties om het nieuwe domein en bereik te vinden. 5f (x) betekent dat de functie verticaal wordt uitgerekt met een factor vijf. Daarom zal het nieuwe bereik een interval overspannen dat vijf keer groter is dan het origineel. In het geval van f (2x) wordt een horizontale rek met een factor van een halve toegepast op de functie. Daarom zijn de uiteinden van het domein gehalveerd. En voila!
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in