Antwoord:
De makkelijke eindpunten zijn de middelpunten,
Uitleg:
Met de middelloodlijnen van een driehoek bedoelen we vermoedelijk de middelloodlijn van elke zijde van een driehoek. Dus er zijn drie middelloodlijnen voor elke driehoek.
Elke middelloodlijn is gedefinieerd om één kant in het middelpunt ervan te snijden. Het zal ook een van de andere kanten kruisen. We gaan ervan uit dat die twee ontmoetingen de eindpunten zijn.
De middelpunten zijn
Dit is waarschijnlijk een goede plaats om meer te leren over parametrische representaties voor lijnen en lijnsegmenten.
Laten we de punten labelen
Zoals
Laten we er één uit werken.
De richtingsvector van C naar B is
(Andere regel, andere parameter.) We kunnen zien waar dit aan elk van de zijden voldoet.
aftrekken,
Dat is buiten het bereik zodat de middelloodlijn van BC de zijkant AB niet raakt.
aftrekken,
Dat geeft het andere eindpunt als
Dit wordt lang, dus ik laat de andere twee eindpunten aan jou over.
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 12 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
De langst mogelijke omtrek is 12 + 40.155 + 32.786 = 84.941. Aangezien twee hoeken (2pi) / 3 en pi / 4 zijn, is de derde hoek pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Voor de langste perimeterzijde van lengte 12, zeg a, moet de tegenoverliggende kleinste hoek pi / 12 zijn en dan wordt de sinusformule gebruikt, andere twee zijden zijn 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Vandaar b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 en c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 De langst mogelijke omtrek is dus 12 + 40.155 + 32.786 = 84.941.
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 4 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
P_max = 28.31 eenheden Het probleem geeft je twee van de drie hoeken in een willekeurige driehoek. Omdat de som van de hoeken in een driehoek moet oplopen tot 180 graden, of pi radialen, kunnen we de derde hoek vinden: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 Laten we de driehoek tekenen: het probleem stelt dat een van de zijden van de driehoek een lengte van 4 heeft, maar het geeft niet aan welke kant. In elke willekeurige driehoek is het waar dat de kleinste zijde tegenovergesteld is aan de kleinste hoek. Als we de omtrek willen maximaliseren, moeten we de
Twee hoeken van een driehoek hebben hoeken van (2 pi) / 3 en (pi) / 4. Als een zijde van de driehoek een lengte van 19 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
Langst mogelijke omtrekkleur (groen) (P = 19 + 51.909 + 63.5752 = 134.4842) Drie hoeken zijn (2pi) / 3, pi / 4, pi / 12 als de drie hoeken optellen tot pi ^ c Om de langste perimeter te krijgen, kant 19 moet overeenkomen met de kleinste hoek pi / 12 19 / sin (pi / 12) = b / sin (pi / 4) = c / sin ((2pi) / 3) b = (19 * sin (pi / 4) ) / sin (pi / 12) = 51.909 c = (19 * sin ((2pi) / 3)) / sin (pi / 12) = 63.5752 Langst mogelijke omtrekkleur (groen) (P = 19 + 51.909 + 63.5752 = 134.4842 )