Twee keer een getal plus drie keer een ander getal is gelijk aan 4. Drie keer het eerste cijfer plus vier keer het andere cijfer is 7. Wat zijn de cijfers?
Het eerste nummer is 5 en de tweede is -2. Laat x het eerste getal zijn en y de tweede. Dan hebben we {(2x + 3y = 4), (3x + 4y = 7):} We kunnen elke methode gebruiken om dit systeem op te lossen. Bijvoorbeeld door eliminatie: ten eerste, het elimineren van x door het aftrekken van een veelvoud van de tweede vergelijking van de eerste, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 en plaats dat resultaat terug in de eerste vergelijking, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Dus het eerste getal is 5 en de tweede is -2. Controleren door deze aan te sluiten bevestigt het resultaat
Product van een positief aantal van twee cijfers en het cijfer in de plaats van de eenheid is 189. Als het cijfer in de plaats van de tien tweemaal zo groot is als dat in de plaats van de eenheid, wat is dan het cijfer in de plaats van het apparaat?
3. Merk op dat de tweecijferige nummers. die aan de tweede voorwaarde voldoen (cond.) zijn, 21,42,63,84. Hiervan, sinds 63xx3 = 189, concluderen we dat het tweecijferige nummer. is 63 en het gewenste cijfer in de eenheid is 3. Om het probleem methodisch op te lossen, stel dat het cijfer van de plaats van tien x is, en dat van eenheden, y. Dit betekent dat het tweecijferige nummer. is 10x + y. "De" 1 ^ (st) "cond." RArr (10x + y) y = 189. "De" 2 ^ (nd) "cond." RArr x = 2y. Sub.ing x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21j ^ 2 = 189 rArr y ^ 2 = 189/21 = 9 rArr y = + - 3
Welke beschrijft de eerste stap bij het oplossen van de vergelijking x-5 = 15? A. Voeg 5 toe aan elke kant B. Voeg 12 aan elke kant C. Trek 5 van elke kant af D. Trek 12 van elke kant af
A. Als u een vergelijking heeft, betekent dit gewoon dat de linkerkant van het gelijkteken gelijk is aan de rechterkant. Als je hetzelfde doet aan beide kanten van een vergelijking, dan veranderen ze allebei met hetzelfde bedrag dus blijven ze gelijk. [voorbeeld: 5 appels = 5 appels (duidelijk waar). Voeg 2 peren toe aan de linkerkant 5 appels + 2 peren! = 5 appels (niet meer gelijk!) Als we ook 2 peren toevoegen aan de andere kant dan blijven de zijkanten gelijk 5 appels + 2 peren = 5 appels + 2 peren] Een letter (bijvoorbeeld x) kan worden gebruikt om een getal weer te geven waarvan we de waarde nog niet kennen. Het is