Wanneer u een exponentieel onderscheidt met een andere base dan
#f (x) = x * lnx / ln5 #
Nu, maak onderscheid en pas de productregel toe:
# d / dxf (x) = d / dx x * lnx / ln5 + x * d / dx lnx / ln5 #
We weten dat de afgeleide van
# d / dxf (x) = lnx / ln5 + x / (xln5) #
Vereenvoudigde opbrengsten:
# d / dxf (x) = (lnx + 1) / ln5 #
Bewijs dat (1 + Log_5 8 + Log_5 2) / log_5 6400 = 0,5 Let op: het basisnummer van elke log is 5 en niet 10. Ik krijg continu 1/80, kan iemand alstublieft helpen?
1/2 6400 = 25 * 256 = 5 ^ 2 * 2 ^ 8 => log (6400) = log (5 ^ 2) + log (2 ^ 8) = 2 + 8 log (2) log (8) = log (2 ^ 3) = 3 log (2) => (1 + log (8) + log (2)) / log (6400) = (1 + 4 log (2)) / (2 + 8log (2)) = 1/2
Wat is de eerste afgeleide en tweede afgeleide van 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(de eerste afgeleide)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(de tweede afgeleide)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(de eerste afgeleide)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(de tweede afgeleide)"
Wat is de tweede afgeleide van x / (x-1) en de eerste afgeleide van 2 / x?
Vraag 1 Als f (x) = (g (x)) / (h (x)) en dan door de quotiëntregel f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Dus als f (x) = x / (x-1) dan is de eerste afgeleide f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) en de tweede afgeleide is f '' (x) = 2x ^ -3 Vraag 2 Als f (x) = 2 / x dit kan worden herschreven als f (x) = 2x ^ -1 en met behulp van standaardprocedures voor het nemen van de afgeleide f '(x) = -2x ^ -2 of, als je de voorkeur geeft aan f' (x) = - 2 / x ^ 2