Antwoord:
# (1-3i) / sqrt (1 + 3i) #
# = (- 2sqrt ((sqrt (10) 1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) 1) / 2)) i #
Uitleg:
In het algemeen de vierkantswortels van
# + - ((sqrt ((sqrt (a ^ 2 + b ^ 2) + a) / 2)) + (b / abs (b) sqrt ((sqrt (a ^ 2 + b ^ 2) -a) / 2)) i) #
Zie:
In het geval van
#sqrt (1 + 3i) #
# = Sqrt ((sqrt (1 ^ 2 + 3 ^ 2) 1) / 2) + sqrt ((sqrt (1 ^ 2 + 3 ^ 2) -1) / 2) i #
# = sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i #
Zo:
# (1-3i) / sqrt (1 + 3i) #
# = ((1-3i) sqrt (1 + 3i)) / (1 + 3i) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / ((1 + 3i) (1-3i)) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / 4 #
# = 1/4 (1-3i) ^ 2 (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = 1/4 (-8-6i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 (4 + 3i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 ((4sqrt ((sqrt (10) 1) / 2) -3sqrt ((sqrt (10) -1) / 2)) + (4sqrt ((sqrt (10) -1) / 2) + 3sqrt ((sqrt (10) 1) / 2)) i) #
# = (- 2sqrt ((sqrt (10) 1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) 1) / 2)) i #
Gebruik ratio en verhouding ... help me deze op te lossen. 12 mijl is ongeveer gelijk aan 6 kilometer. (a) Hoeveel kilometer zijn gelijk aan 18 mijl? (b) Hoeveel mijlen zijn gelijk aan 42 kilometer?
A 36 km B. 21 mijl De verhouding is 6/12, die kan worden teruggebracht tot 1 mijl / 2 km dus (2 km) / (1 m) = (x km) / (18 m) Vermenigvuldig beide zijden met 18 mijl ( 2km) / (1m) xx 18 m = (x km) / (18 m) xx 18 m de kilometers verdelen elkaar en verlaten 2 km xx 18 = x 36 km = x de verhouding rond voor deel b geeft (1 m) / (2 km) = (xm) / (42 km) Vermenigvuldig beide zijden met 42 km (1 m) / (2 km) xx 42 km = (xm) / (42 km) xx 42 km De km verdelen zich 21 m = xm
Een lijn met de beste fit voorspelt dat wanneer x gelijk is aan 35, y gelijk is aan 34,785, maar y gelijk is aan 37. Wat is in dit geval de rest?
2.215 Residu wordt gedefinieerd als e = y - hat y = 37 - 34.785 = 2.215
Wat is (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 We nemen, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3 ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Merk op dat, als in de noemers (sqrt3 + sqrt (3 + sqrt5)) en (sqrt