
Antwoord:
Bekijk hieronder het volledige oplossingsproces:
Uitleg:
De helling-interceptievorm van een lineaire vergelijking is:
Waar
Bepaal eerst de helling van de lijn. De helling kan worden gevonden met behulp van de formule:
Waar
Vervanging van de waarden uit de punten in het probleem geeft:
Het punt
De door ons berekende helling substitueren en het y-snijpunt geeft:
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?

-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
De OMVANG van gelijkbenige trapezoïde ABCD is gelijk aan 80 cm. De lengte van de lijn AB is 4 keer groter dan de lengte van een CD-lijn die 2/5 is van de lengte van de lijn BC (of de lijnen die in lengte gelijk zijn). Wat is het gebied van de trapezoïde?

Het trapeziumoppervlak is 320 cm ^ 2. Laat het trapezium zijn zoals hieronder getoond: hier, als we uitgaan van kleinere zijde, is CD = een en grotere zijde AB = 4a en BC = a / (2/5) = (5a) / 2. Als zodanig is BC = AD = (5a) / 2, CD = a en AB = 4a Vandaar is de omtrek (5a) / 2xx2 + a + 4a = 10a Maar de omtrek is 80 cm .. Vandaar a = 8 cm. en twee paillekanten weergegeven als a en b zijn 8 cm. en 32 cm. Nu trekken we loodlijnen voor C en D naar AB, die twee identieke rechthoekige driehoeken vormen, waarvan de schuine zijde 5 / 2xx8 = 20 cm is. en base is (4xx8-8) / 2 = 12 en vandaar dat de hoogte sqrt (20 ^ 2-12 ^ 2) = sqrt
Wat is de hellingsinterceptievorm van de lijn die doorloopt (-10,6) met een helling van 3/2?

Zie een oplossingsprocedure hieronder: De helling-interceptievorm van een lineaire vergelijking is: y = kleur (rood) (m) x + kleur (blauw) (b) Waarin kleur (rood) (m) de helling en kleur is (blauw ) (b) is de y-snijpuntswaarde. We kunnen de helling van het probleem vervangen door: y = kleur (rood) (3/2) x + kleur (blauw) (b) In de vergelijking kunnen we nu de waarden vervangen door het punt voor x en y en vervolgens oplossen voor kleur (blauw) (b) 6 = (kleur (rood) (3/2) xx -10) + kleur (blauw) (b) 6 = -kleur (rood) (30/2) + kleur (blauw) ( b) 6 = -kleur (rood) (15) + kleur (blauw) (b) 15 + 6 = 15 - kleur (rood) (15) + kle