Antwoord:
Als
Als
Uitleg:
Versie 1:
is gelijk aan
na aftrekken
dan vermenigvuldigt beide zijden met
Versie 2:
beide kanten vermenigvuldigen met
vereenvoudigen
Tomas schreef de vergelijking y = 3x + 3/4. Toen Sandra haar vergelijking schreef, ontdekten ze dat haar vergelijking dezelfde oplossingen had als de vergelijking van Tomas. Welke vergelijking kan van Sandra zijn?
4y = 12x +3 12x-4y +3 = 0 Een vergelijking kan in vele vormen worden gegeven en toch hetzelfde betekenen. y = 3x + 3/4 "" (bekend als de helling / intercept-vorm.) Vermenigvuldigd met 4 om de breuk te verwijderen geeft: 4y = 12x +3 "" rarr 12x-4y = -3 "" (standaardformulier) 12x- 4y +3 = 0 "" (algemene vorm) Dit zijn allemaal in de eenvoudigste vorm, maar we zouden er ook oneindig veel variaties van kunnen hebben. 4y = 12x + 3 kan worden geschreven als: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 enz
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.
Waarom heeft de vergelijking 4x ^ 2-25y ^ 2-24x-50y + 11 = 0 niet de vorm van een hyperbool, ondanks het feit dat de gekwadrateerde termen van de vergelijking verschillende tekens hebben? Ook waarom kan deze vergelijking in de vorm van hyperbool worden gezet (2 (x-3) ^ 2) / 13 - (2 (y + 1) ^ 2) / 26 = 1
Aan mensen, die de vraag beantwoorden, noteer deze grafiek: http://www.desmos.com/calculator/jixsqaffyw Ook hier is het werk om de vergelijking in de vorm van een hyperbool te krijgen: