Antwoord:
De vereiste twee gehele getallen zijn
Uitleg:
Laat de kleinste van de twee oneven gehele getallen zijn
Dan is het volgende oneven gehele getal
Omdat de som van deze 2 gehele getallen 96 is, kunnen we schrijven
Nu op te lossen
Vandaar dat de vereiste twee gehele getallen zijn
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van twee opeenvolgende oneven gehele getallen is 56, hoe vind je de twee oneven gehele getallen?
De oneven nummers zijn 29 en 27 Er zijn verschillende manieren om dit te doen. Ik kies ervoor om de afleiding van de oneven-getalmethode te gebruiken. Het punt is dat ik een seed-waarde gebruik die moet worden geconverteerd om te komen tot de gewenste waarde. Als een getal deelbaar is door een antwoord met een geheel getal op te geven, hebt u een even getal. Om dit naar oneven te converteren, optelt u gewoon 1 ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ kleur (blauw) ("De seedwaarde is" n) Laat een even getal zijn 2n Dan is elk oneven nummer 2n + 1 Als het eerste one
Drie opeenvolgende oneven gehele getallen zijn zodanig dat het kwadraat van het derde gehele getal 345 minder is dan de som van de vierkanten van de eerste twee. Hoe vind je de gehele getallen?
Er zijn twee oplossingen: 21, 23, 25 of -17, -15, -13 Als het kleinste geheel getal n is, dan zijn de anderen n + 2 en n + 4 Tolken de vraag, we hebben: (n + 4) ^ 2 = n ^ 2 + (n + 2) ^ 2-345 die uitklapt naar: n ^ 2 + 8n + 16 = n ^ 2 + n ^ 2 + 4n + 4 - 345 kleur (wit) (n ^ 2 + 8n +16) = 2n ^ 2 + 4n-341 Aftrekken n ^ 2 + 8n + 16 van beide kanten, vinden we: 0 = n ^ 2-4n-357 kleur (wit) (0) = n ^ 2-4n + 4 -361 kleur (wit) (0) = (n-2) ^ 2-19 ^ 2 kleur (wit) (0) = ((n-2) -19) ((n-2) +19) kleur (wit ) (0) = (n-21) (n + 17) Dus: n = 21 "" of "" n = -17 en de drie gehele getallen zijn: 21, 23, 25 of -17, -15,