Antwoord:
De vergelijking heeft wel een oplossing, met
Uitleg:
Merk allereerst op
Overweeg dan de rechterkant. Voor de vergelijking om een oplossing te hebben, moeten we hebben
{sinds
De enige oplossing is wanneer
Vervanging
Dus, de vergelijking heeft wel een oplossing, met
(Als
Tara kocht 30 boeken werfverkoop. Ze heeft nu 220 boeken. Welke vergelijking kan worden opgelost om b het aantal boeken te vinden dat Tara had vóór de werfverkoop?
Tara had 190 boeken voordat ze de boeken kocht bij de werfverkoop. "220 boeken" - "30 boeken" = "190 boeken" Tara had 190 boeken voordat ze de boeken kocht bij de werfverkoop.
De helling m van een lineaire vergelijking kan worden gevonden met behulp van de formule m = (y_2 - y_1) / (x_2-x_1), waarbij de x-waarden en y-waarden afkomstig zijn van de twee geordende paren (x_1, y_1) en (x_2 , y_2), Wat is een equivalente vergelijking opgelost voor y_2?
Ik weet niet zeker of je dit wilt, maar ... Je kunt je expressie anders rangschikken om y_2 te isoleren met een paar 'Algaebric Movements' over het = teken: Uitgaande van: m = (y_2-y_1) / (x_2-x_1) Take ( x_2-x_1) aan de linkerkant tegenover het = -teken, daarbij herinnerend dat als het zich oorspronkelijk deelde, het gelijkteken voorbij ging, het nu vermenigvuldigt: (x_2-x_1) m = y_2-y_1 Vervolgens nemen we y_1 naar links om te onthouden dat we van operatie moeten veranderen opnieuw: van aftrekken tot sum: (x_2-x_1) m + y_1 = y_2 Nu kunnen we de geherrangschikte expressie in termen van y_2 "lezen" als: y
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.