Antwoord:
De hypothese-been-stelling stelt dat als het been en de hypotenusa van een driehoek gelijk is aan het been en de hypotenusa van een andere driehoek, ze dan congruent zijn.
Uitleg:
Als ik bijvoorbeeld een driehoek had met een poot van 3 en een hypotenusa van 5, zou ik een andere driehoek met een poot van 3 en een hypotenusa van 5 nodig hebben om congruent te zijn.
Deze stelling is vergelijkbaar met de andere stellingen die worden gebruikt om driehoekscongruente te bewijzen, zoals zij-zij-kant, SAS -zij-zijhoek SSA, zij-zij-zijde SSS, hoek-zijhoek ASA, Hoek-kant AAS, hoek-hoek AAA.
Bron en voor meer info:
My Geometry notes
Dit is een voorbeeld van warmteoverdracht door wat? + Voorbeeld
Dit is convectie. Dictionary.com definieert convectie als "de overdracht van warmte door de circulatie of beweging van de verwarmde delen van een vloeistof of gas." Het betrokken gas is lucht. Convectie vereist geen bergen, maar dit voorbeeld heeft ze.
Wat betekent chiasmus? Wat is een voorbeeld? + Voorbeeld
Chiasmus is een apparaat waarin twee zinnen tegen elkaar worden geschreven en hun structuur omkeren. Waar A het eerste herhaalde onderwerp is, en B tweemaal ertussenin. Voorbeelden kunnen zijn "Never let a Fool Kiss You or a Kiss Fool You." Nog een exemplaar van John F. Kennedy is "vraag niet wat uw land voor u kan doen, vraag wat u voor uw land kunt doen". Ik hoop dat dit helpt :)
Wat is een concreet voorbeeld? + Voorbeeld
Een concreet voorbeeld is een voorbeeld dat kan worden aangeraakt of waargenomen in tegenstelling tot een abstract voorbeeld dat niet kan zijn. Een concreet voorbeeld is een voorbeeld dat kan worden aangeraakt of waargenomen in tegenstelling tot een abstract voorbeeld dat niet kan zijn. Laten we zeggen dat ik toevoeging probeer te beschrijven. Een abstract voorbeeld van toevoegen is ongeveer zo: wanneer we toevoegen, nemen we de waarde van één set en verhogen deze met de waarde van een andere set om een som te bereiken. Nu is hier een concreet voorbeeld: wanneer we de nummers 1 en 2 toevoegen, kunnen we 1 munt n