Antwoord:
Het draagvermogen is de limiet van
Uitleg:
De term "draagvermogen" met betrekking tot een logistieke functie wordt over het algemeen gebruikt bij het beschrijven van de populatiedynamica in de biologie. Stel dat we proberen de groei van een vlinderpopulatie te modelleren.
We zullen wat logistieke functies hebben
Als het aantal vlinders groter is dan de draagkracht, zal de bevolking de neiging hebben om te krimpen met de tijd. Als het aantal vlinders minder is dan het draagvermogen, zal de populatie na verloop van tijd groeien. Als we genoeg tijd laten, de bevolking moet neigen naar de draagkracht.
Zo kan de draagkracht worden beschouwd als de limiet van
Het ontbijt van Tyrese kost $ 9. Een belasting van 4% wordt toegevoegd aan de factuur. Hij wil 15% van de kosten van het ontbijt als fooi geven. Wat zijn de totale kosten van het ontbijt van Tyrese met belasting en fooi? Als hij betaalt met een rekening van $ 20, wat zal dan zijn verandering zijn?
De totale kosten van het ontbijt van Tyrese inclusief belasting en fooi zijn $ 10,71. Zijn verandering van een rekening van $ 20 is $ 9,29. Zijn totale kosten zijn: De kosten van de maaltijd + belasting + fooi 1) Bepaal het bedrag van de belasting 4% van $ 9 wordt op deze manier berekend : 9 xx 0.04 Dat bedrag komt op $ 0,36. Controleer om te zien of dat redelijk is: 10% van $ 9 is gelijk aan 90 cent. Daarom moet 5% gelijk zijn aan 45 cent. Dus 4% moet iets minder zijn dan 45 cent. $ 0,36 is eigenlijk iets minder dan $ 0,45, dus het is waarschijnlijk goed. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Water lekt uit een omgekeerde conische tank met een snelheid van 10.000 cm3 / min, terwijl water met constante snelheid in de tank wordt gepompt. Als de tank een hoogte van 6 m heeft en de diameter bovenaan 4 m is en als het waterniveau stijgt met een snelheid van 20 cm / min wanneer de hoogte van het water 2 m is, hoe vindt u dan de snelheid waarmee het water in de tank wordt gepompt?
Laat V het volume water in de tank zijn, in cm ^ 3; laat h de diepte / hoogte van het water zijn, in cm; en laat r de straal zijn van het oppervlak van het water (bovenaan), in cm. Omdat de tank een omgekeerde kegel is, is ook de massa water. Aangezien de tank een hoogte heeft van 6 m en een straal bovenaan 2 m, impliceert dezelfde driehoek dat frac {h} {r} = frac {6} {2} = 3 zodat h = 3r. Het volume van de omgekeerde kegel van water is dan V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Onderscheid nu beide zijden met betrekking tot tijd t (in minuten) om frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} te krijgen (de kettin
Een object met een massa van 32 g wordt bij 0 ° C in 250 ml water gedruppeld. Als het object afkoelt met 60 ° C en het water wordt verwarmd met 3 ^ @ C, wat is de soortelijke warmte van het materiaal waaruit het object is gemaakt?
Geef m_o -> "Massa van het object" = 32g v_w -> "Volume van waterobject" = 250 ml Deltat_w -> "Temperatuurstijging van water" = 3 ^ @ C Deltat_o -> "Temperatuurval van het object" = 60 ^ @ C d_w -> "Dichtheid van water" = 1 g / (ml) m_w -> "Watermassa" = v_wxxd_w = 250mLxx1g / (mL) = 250g s_w -> "Sp.heat of water" = 1calg ^ " -1 "" "^ @ C ^ -1" Let "s_o ->" Sp.heat van het object "Nu volgens calorimetrisch principe Warmte verloren door object = Warmte gewonnen door water => m_o xx s_o xxD