Twee hoeken van een driehoek hebben hoeken van (pi) / 3 en (pi) / 6. Als een zijde van de driehoek een lengte van 5 heeft, wat is dan de langst mogelijke omtrek van de driehoek?

Twee hoeken van een driehoek hebben hoeken van (pi) / 3 en (pi) / 6. Als een zijde van de driehoek een lengte van 5 heeft, wat is dan de langst mogelijke omtrek van de driehoek?
Anonim

Antwoord:

#=11.83#

Uitleg:

Het is duidelijk dat dit een rechthoekige driehoek is als # PI- (pi) / 3-pi / 6 = pi / 2 #

een # side = hypoten use = 5 #; Dus andere kanten # = 5sin (pi / 3) en 5cos (pi / 3) #

Daarom perimeter van de driehoek# = 5 + 5sin (pi / 3) + 5cos (pi / 3) #

# = 5 + (5times0.866) + (5times0.5) #

#=5+4.33+2.5)#

#=11.83#