Antwoord:
De vergelijking van parabool is
Uitleg:
Focus is op
tussen focus en directrix. Daarom is vertex op
van vertex, dus de horizontale parabool gaat naar links open. De vergelijking van
horizontale paraboolopening links is
tussen focus en vertex is
vergelijking van horizontale parabool is
of
grafiek {(y + 5) ^ 2 = -16 (x + 1) -80, 80, -40, 40} Ans
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = 5 en een focus op (11, -7)?
(y + 7) ^ 2 = 12 * (x-8) Je vergelijking heeft de vorm (yk) ^ 2 = 4 * p * (xh) De focus is (h + p, k) De directrix is (hp) Gegeven de focus op (11, -7) -> h + p = 11 "en" k = -7 De richting x = 5 -> hp = 5 h + p = 11 "" (vergelijking 1) "hp = 5 "" (vergelijking 2) ul ("gebruik (vraag 2) en los op voor h") "" h = 5 + p "(vergelijking 3)" ul ("Gebruik (vergelijking 1) + (vergelijking 3) ) om de waarde van "p) (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul te vinden (" Gebruik (eq.3) om de waarde van "h) h = 5 + te vinden ph = 5 + 3 h =
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = -6 en een focus op (12, -5)?
Y ^ 2 + 10y-36x + 133 = 0 "voor elk punt" (x, y) "op de parabool" "de afstand van" (x, y) "naar de focus en de richting" "zijn gelijk" "met behulp van de "color (blue)" afstandsformule "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | kleur (blauw) "vierkant aan beide zijden" (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArrcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = annuleer (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = -5 en een focus op (-7, -5)?
De vergelijking van de parabool is (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Elk punt (x, y) op de parabool ligt op gelijke afstand van de richtlijn en de focus. Daarom is x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (- 5)) ^ 2) x + 5 = sqrt ((x + 7) ^ 2 + (y + 5) ^ 2) Verkleinen en ontwikkelen van de (x + 7) ^ 2 term en de LHS (x + 5) ^ 2 = (x + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 = x ^ 2 + 14x + 49 + (y + 5) ^ 2 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) De vergelijking van de parabool is (y + 5) ^ 2 = -4x-24 = -4 (x + 6) grafiek {((y + 5) ^ 2 + 4x + 24) ((x + 7) ^ 2 + (y + 5) ^ 2-0.03) (y-100 (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,925]}