Antwoord:
Uitleg:
De directrix is x = 8 de focus S is (-7, 3), in de negatieve richting van de x-as, van de directie..
Gebruik makend van de definitie van de parabool als de locus van het punt dat op gelijke afstand ligt van de richtlijn en de focus, is de vergelijking
omdat de parabool zich aan de focuszijde van de richtlijn bevindt, in de negatieve x-richting.
Squaring, uitbreiden en vereenvoudigen, de standaardvorm is.
De as van de parabool is y = 3, in de negatieve x-richting en de vertex V is (1/2, 3). De parameter voor grootte, a = 15/2.,
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = 5 en een focus op (11, -7)?
(y + 7) ^ 2 = 12 * (x-8) Je vergelijking heeft de vorm (yk) ^ 2 = 4 * p * (xh) De focus is (h + p, k) De directrix is (hp) Gegeven de focus op (11, -7) -> h + p = 11 "en" k = -7 De richting x = 5 -> hp = 5 h + p = 11 "" (vergelijking 1) "hp = 5 "" (vergelijking 2) ul ("gebruik (vraag 2) en los op voor h") "" h = 5 + p "(vergelijking 3)" ul ("Gebruik (vergelijking 1) + (vergelijking 3) ) om de waarde van "p) (5 + p) + p = 11 5 + 2p = 11 2p = 6 p = 3 ul te vinden (" Gebruik (eq.3) om de waarde van "h) h = 5 + te vinden ph = 5 + 3 h =
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = -6 en een focus op (12, -5)?
Y ^ 2 + 10y-36x + 133 = 0 "voor elk punt" (x, y) "op de parabool" "de afstand van" (x, y) "naar de focus en de richting" "zijn gelijk" "met behulp van de "color (blue)" afstandsformule "sqrt ((x-12) ^ 2 + (y + 5) ^ 2) = | x + 6 | kleur (blauw) "vierkant aan beide zijden" (x-12) ^ 2 + (y + 5) ^ 2 = (x + 6) ^ 2 rArrcancel (x ^ 2) -24x + 144 + y ^ 2 + 10y + 25 = annuleer (x ^ 2) + 12x + 36 rArry ^ 2 + 10y-36x + 133 = 0
Wat is de standaardvorm van de vergelijking van de parabool met een directrix op x = -5 en een focus op (-7, -5)?
De vergelijking van de parabool is (y + 5) ^ 2 = -4x-24 = -4 (x + 6) Elk punt (x, y) op de parabool ligt op gelijke afstand van de richtlijn en de focus. Daarom is x - (- 5) = sqrt ((x - (- 7)) ^ 2+ (y - (- 5)) ^ 2) x + 5 = sqrt ((x + 7) ^ 2 + (y + 5) ^ 2) Verkleinen en ontwikkelen van de (x + 7) ^ 2 term en de LHS (x + 5) ^ 2 = (x + 7) ^ 2 + (y + 5) ^ 2 x ^ 2 + 10x + 25 = x ^ 2 + 14x + 49 + (y + 5) ^ 2 (y + 5) ^ 2 = -4x-24 = -4 (x + 6) De vergelijking van de parabool is (y + 5) ^ 2 = -4x-24 = -4 (x + 6) grafiek {((y + 5) ^ 2 + 4x + 24) ((x + 7) ^ 2 + (y + 5) ^ 2-0.03) (y-100 (x + 5)) = 0 [-17,68, 4,83, -9,325, 1,925]}